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1Université Côte d’Azur, 77 Chemin des Basses Moulières, 06130 Grasse, France
email: jp.rozelot@orange.fr

2Center for Computational Heliophysics and Department of Physics, New Jersey Institute of
Technology, Newark, NJ 07102, USA

email: alexander.g.kosovichev@njit.edu
3 Akdeniz University Faculty of Science, Department of Space Science and Technologies,

07058, Antalya, Turkey
email: alikilcik@akdeniz.edu.tr

Abstract. Solar oblateness has been the subject of several studies dating back to the nine-
teenth century. Despite difficulties, both theoretical and observational, tangible results have
been achieved. However, variability of the solar oblateness with time is still poorly known. How
the solar shape evolves with the solar cycle has been a challenging problem. Analysis of the
helioseismic data, which are the most accurate measure of the solar structure up to now, leads
to the determination of asphericity coefficients which have been found to change with time. We
show here that by inverting even coefficients of f-mode oscillation frequency splitting to obtain
the oblateness magnitude and its temporal dependence can be inferred. It is found that the
oblateness variations lag the solar activity cycles by about 3 years. A major change occurred
between solar cycles 23 and 24 is that the oblateness was greater in cycle 24 despite the lower
solar activity level. Such results may help to better understand the near-subsurface layers as
they strongly impacts the internal dynamics of the Sun and may induce instabilities driving the
transport of angular momentum.
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1. Introduction

The spherically symmetrical state represents a unique solution of the problem of hydrostatic
equilibrium for a fluid mass at rest in the three-dimensional space. The problem complicates
when the mass is rotating. For stars, the axial rotation modifies the shape of equilibrium by
adding a centrifugal acceleration term to the total potential, breaking the spherical symmetry.
The stellar sphere becomes an oblate figure, and we have no a priori knowledge of its stratifica-
tion, the boundary shape, planes of symmetry, the angular momentum transfer, etc. Moreover,
when the rotation rate is not constant in radius and latitude, the surface deviates from a simple
oblate figure, and it shape becomes more complicated, particularly, in the presence of internal
stresses caused by magnetic fields, for instance.

Considering the Earth as a rotating ellipsoid in uniform rotation ω, Newton gave in 1687 for
the first time, an approximate formulation of its flattening f , as a function of surface gravity
gs: f = 5

4
ω2 ·Req/gs, where Req is the equatorial radius. Huyghens, in 1690, reformulated the

flattening in the form f = 1
2
ω2 ·Req/gs, still commonly used as a first approximation.

Let us consider the case of a mass of polytropic gas of index n, rotating at a constant angular
velocity ω. The equilibrium configuration and shape of such a body is known since the works
of Milne (1923) and Chandrasekhar (1933). By writing the mechanical equilibrium equations
and seeking a solution in the form of a perturbed case of the non-rotating configuration, and
neglecting high-order effects arising from ω4, and defining the boundary of the star by a constant
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null density level, the flattering is given by an equation of the type f = υω2/Gρc, where G is
the constant of gravitation, ρc the density of the core, and υ is a term depending on the chosen
polytropic index. Extensive computations can be found in Chandrasekhar (1933); for instance
for the solar case (n = 3):

f =

(
0.5 + 0.856

ρm
ρc

)
ω2Req

gs
(1.1)

where ρm/ρc, is the ratio of the mean to central density. Even if such a formalism can be now
considered as outdated, it could be noticed that the approximation is still rather good for non
polytropic structures with discontinuous variation of density, such as the Earth.

In the solar case, taking ρc/ρm = 107.168, ω = 2.85×10−6 rad/s, R⊙ = 6.955080×1010 cm
and g = 2.74×104 cm/s2 (Allen (2000)), it follows that f = 1.04×10−5, in satisfying agreement
with the best up-to-date determination of 8.55×10−6.

The story of the solar oblateness began in 1891 when Harzer (1891) introduced for the first
time in a theory of solar rotation an oblateness of the Sun, estimating f as ∼= 6.32 × 10−3.
The history continued in 1895 when Newcomb (1895) described a rapidly rotating solar interior
in ”such a way that the surfaces of equal density are non spherical”. He demonstrated that if
the difference between the equatorial and polar radii ∆r = Req − Rpol reached ∼= 500 mas, it
would explain the discrepancy between the prediction of the Newtonian gravitational theory
and the perihelion advance of Mercury observed by Le Verrier in 1859. However, measurements
soon ruled out this hypothesis. The discrepancy between the observed advance of Mercury’s
perihelion and the gravitational theory of planets was explained by the formalism developed
by Einstein in 1905. In recent times, even though general relativity had given a satisfactory
prediction of Mercury’s perihelion, the argument was once again debated after Dicke’s historical
measurement of ∆r = 41.9 ± 3.3 mas (Dicke 1970). We know today that such measurements
were inaccurate; nevertheless they have been a source of progress. Based on theoretical premises,
Dicke (1970) proposed that the magnitude of the oblateness should be 8.1 × 10−6, without any
stress generated by other constraints (magnetic fields at first). Discussion of the historical data
is certainly an interesting tour through different techniques. The precision required for deter-
mination of changes of the solar oblateness at the cutting edge of modern available techniques
was set up, for instance, at the Pic du Midi observatory where a number of measurements was
made (Rozelot et al. (2011), Table 2). But, even with a deconvolution of atmospheric effects,
the measurements still suffered from atmospheric disturbances. The community was attentive to
further progress coming from dedicated space experiments, first on balloon flights, and then on
board of spacecraft, mainly SoHO, SDO and in a lesser measure RHESSI (Fivian et al. (2008),
Hudson and Rozelot (2010)) and Picard (Irbah et al. (2019)). The main conclusions from this
brief review have been summarized in Damiani et al. (2011).

Through helioseismic measurements, considerable efforts have been made, at least since the
eighties and up to now, in measuring from the odd-order frequency splitting coefficients the
internal differential rotation of the Sun. Less progress has been made in analyzing the solar
asphericity from the even-order frequency splitting measurements. Kuhn (1988) was the first to
note that frequencies of solar oscillations vary systematically during the solar cycle, inferring the
corresponding temperature change, but also noting that these variations could reflect changes
in the solar structure due to variations of the Reynold’s stresses or turbulent pressure. We try
here to derive the global outer-limb shape temporal variations, assuming for this study that the
site of the perturbation is very close to the surface.

2. Data

Thanks to the Michelson Doppler Imager (MDI) (Scherrer et al., 1995) on Solar and He-
liospheric Observatory (SoHO) and the Helioseismic and Magnetic Imager (HMI) (Scherrer et
al., 2012) aboard NASA’s Solar Dynamics Observatory (SDO), and their capability to observe
with an unprecedented accuracy the surface gravity oscillation (f) modes, it is possible to ex-
tract information concerning the coefficients of rotational frequency splitting, an. The odd an

coefficients (n = 1, 3 ...) measure the differential rotation, whilst the even one (n = 2, 4 ...)
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measure the degree of asphericity (i.e. departure from sphericity). The analysis was focused on
the low-frequency medium-degree f-modes in the range of ℓ = 137-299, using the data covering
nearly two solar cycles, from April 30, 1996, to June 4, 2017. The an (n even) coefficients) are a
sensitive probe of the symmetrical (about the equator) part of distortion described by Legendre
polynomials Pn(cos θ). Results published by Kosovichev and Rozelot (2018a,b) showed that the
asphericity of the Sun dramatically changes from the solar minimum to maximum. During the
solar minimum (from 1996 to 1998) the asphericity was dominated by the P2 and P4 terms,
while the P6 contribution was negligible. It was shown that the ellipticity of the Sun is strongly
affected during the solar cycle. We will try here to better quantify such temporal variations.

According to the von Zeipel’s theorem (1924), the solar-limb contours of temperature, density,
or pressure should be nearly coincident near the photosphere. Rotation, magnetic fields, and
turbulent pressure are the largest local acceleration sources that violate the von Zeipel’s theorem
(Dicke 1970). Since (geometrical) asphericities are relatively small in the Sun, we may describe
the distance from the center, for instance, in terms of a constant isodensity level, (or, similarly,
in terms of isotemperature or isogravity) by:

R(cos θ)|ρ=constant = Rsp

[
1 +

∑
n

cn(Rsp)Pn(cos θ)

]
(2.1)

where Rsp is the mean limb contour radius, θ the angle to the symmetry axis (colatitude), and
Pn the Legendre polynomial of degree n. The asphericity is described by coefficients cn, which
are called quadrupole for n = 2 (c2) and hexadecapole for n = 4 (c4). Terms of higher orders are
conventionally named by adding ”-pole” to the degree number. It is straightforward to determine
f from Eq. 2.1 by means of the asphericities coefficients, c2, c4 and c6, as f = − 3

2
c2− 5

8
c4− 21

16
c6.

The measured splitting coefficients an are related to the shape coefficients cn through a
normalization factor K. An efficient method for calculating this factor was developed by Kuhn
(1989) who showed that it was possible to invert the splitting data to obtain the structural
asphericity; he obtained an = KcnRn(ℓ). Assuming Rn = Rsp, as this analysis is conducted
only very close to the surface (i.e. the seismic radius at the surface), the corresponding average
factors are:

< a2 >= −0.546 c2 Rsp; < a4 >= 0.091 c4 Rsp; < a6 >= −1.274 < c6 > Rsp

where the an frequency splitting coefficients are measured in Hz (Kuhn (1989), to within /2π).

3. Results

Results displayed in Fig. 1(left) show the solar oblateness f as a function of time from 1996
to 2017. A periodic oscillation appears, with two minima around the years of 2000 and 2011 and
two maxima around 2005 and 2016. If these minima and maxima correspond to the minima and
maxima of the solar activity cycles, then there is a shift between the asphericity and activity
of around 3 years. Fig. 1(right) displays the difference between the equatorial and polar radii,
∆r, in millisecond of arc (mas) versus the solar activity, the sunspot number taken as a proxy
(Clette et al. 2016). In order to get a better view of the two cycles that are significantly different
in the level of magnetic activity, we calculated variations of the ∆r annual means separately
for these cycles. The two cycles show a different behavior as seen in Fig. 2, left panel for cycle
23 and right panel for cycle 24. Straight lines show a linear regression fit. A negative trend for
cycle 23 is noticeable, while a positive trend appears for cycle 24.

4. Conclusion

The analysis of the helioseismology data from the SoHO and SDO space missions permits
to determine accurately the splitting rotational coefficients together with the structural shape
parameters.

The preliminary results obtained here by averaging the f mode frequency variations over
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Figure 1. Left: Solar oblateness f (left scale) and the solar sunspot number SSN (red, right
scale) as a function of time. A periodic oscillation appears, with two minima around 2000 and
2011 and two maxima around 2005 and 2016. Right: The difference between the equatorial and
polar radius ∆r (in mas) versus the solar activity described by the sunspot numbers. A slight
anticorrelation is visible.

Figure 2. Annual mean difference between the equatorial and polar radius ∆r (in mas) versus
the solar activity during cycles 23 (left) and 24 (right). The two cycles show a different behavior:
a negative trend for cycle 23 and a positive one for cycle 24. (Source of the sunspot data:
WDC-SILSO, Royal Observatory of Belgium, Brussels).

two solar cycles for the whole observed angular degree range, ℓ = 137–299, lead to a mean
solar oblateness of f = 8.76 ×10−6. The deduced mean structural asphericity coefficients are
respectively:

c2 = 8.08× 10−7; c4 = −1.67× 10−5 and c6 = 3.48× 10−7

These even splitting coefficients vary in time as they depend on latitudinal inhomogeneities
caused by aspherical perturbations due to the solar rotation, magnetic fields beneath the surface,
and even temperature variations.

It is shown that the solar oblateness is time dependent. However, its variation is quite com-
plex, both in magnitude and time. If the solar oblateness shows a periodicity of about 11 years,
it does not follow exactly the solar cycle. Currently, we have no explanation for the ∼ 3-year
time lag of the flattering parameter f relative to the activity cycle, bearing in mind that the
a2, a4 and a6 coefficients are respectively shifted from the solar cycle by around 0.1, 1.6 and
-1.6 years (Kosovichev and Rozelot, (2018a)). The significant variations in time and the phase
shifting according to the solar cycle activity (as seen in Fig. 1) are probably two main reasons
why the observational results from ground based instruments, balloon flights and satellite in-
struments seem to be inconsistent. An explanation has already put forward by Rozelot et al.
(2009) by considering the temporal variation caused by a change in the relative importance of
the hexadecapolar and dipolar terms. At the time of high activity, only the dipolar moment
c2 has a significant effect, but at the time of low activity, c4 is predominant; this results in
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a decrease of the total value of the oblateness. Contribution of the c6 term is less important
due its low magnitude, but can be considered in a more detailed approach. Irbah et al. (2019)
revisiting past solar oblateness measurements concluded that the solar oblateness ”variations
are in phase during odd cycles and anti-phase during even cycles”, but the situation seems to
be more complex.

Clearly, we are very close to having the required data and boundary conditions to investigate
deeper the solar shape structural coefficients and their changes during the two solar cycle that
are significantly different in the level of magnetic activity. Should the solar oblateness be de-
termined accurately from space, this could help to disentangle the various contributions to the
asphericity splittings of solar oscillation frequencies, and get insight into the physical processes
that may be at play in the leptocline.

The work was partially supported by the NASA grants NNX14AB7CG and NNX17AE76A.

Discussion

Krystof Helminiak: About the radius variations -do we expect such variations in stars with
stronger magnetic fields, like late type dwarfs? Could such variations be stronger and measur-
able?

Jean Pierre Rozelot: within the Sun, stronger magnetic fields lead to more important radius
variability, particularly just below the surface (leptocline). We do expect the same for stars.
Measurements are still difficult as we don’t have yet accurate devices. This could be done in a
next future.
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